论文标题
基于模型的递归分区用于离散事件时间
Model-based recursive partitioning for discrete event times
论文作者
论文摘要
基于模型的递归分区(MOB)是一种半参数统计方法,允许识别可以与广泛的结果指标结合的亚组,包括连续的时间赛车结果。当按离散量表测量时间时,方法和模型需要考虑这种差异,因为其他亚组可能会虚假,并且效果偏见。 M-Fluctuation检验的BOB分裂标准的基础测试假定独立观察。但是,对于拟合离散的事件模型,必须对数据矩阵进行修改,从而导致增强的数据矩阵违反了独立性假设。我们建议使用离散生存数据(MOB-DS)的MOB,该数据控制用于数据分裂的测试的I型错误率,因此,尽管存在不存在。 MOB-DS使用置换方法来说明增强的事件数据中的依赖关系,以获取存在无子组的零假设下的分布。通过模拟,我们研究了新的MOB-DS的I型错误率以及不同生存曲线和事件速率不同模式的标准BOB。我们发现,测试的I型错误率对MOB-DS得到了很好的控制,但观察到BOB的错误率有相当大的膨胀。为了说明所提出的方法,将MOB-DS应用于失业持续时间的数据。
Model-based recursive partitioning (MOB) is a semi-parametric statistical approach allowing the identification of subgroups that can be combined with a broad range of outcome measures including continuous time-to-event outcomes. When time is measured on a discrete scale, methods and models need to account for this discreetness as otherwise subgroups might be spurious and effects biased. The test underlying the splitting criterion of MOB, the M-fluctuation test, assumes independent observations. However, for fitting discrete time-to-event models the data matrix has to be modified resulting in an augmented data matrix violating the independence assumption. We propose MOB for discrete Survival data (MOB-dS) which controls the type I error rate of the test used for data splitting and therefore the rate of identifying subgroups although none is present. MOB-ds uses a permutation approach accounting for dependencies in the augmented time-to-event data to obtain the distribution under the null hypothesis of no subgroups being present. Through simulations we investigate the type I error rate of the new MOB-dS and the standard MOB for different patterns of survival curves and event rates. We find that the type I error rates of the test is well controlled for MOB-dS, but observe some considerable inflations of the error rate for MOB. To illustrate the proposed methods, MOB-dS is applied to data on unemployment duration.