论文标题
很少有干净的实例有助于确定遥远的监督
Few Clean Instances Help Denoising Distant Supervision
论文作者
论文摘要
现有的远处监督的关系提取器通常依靠嘈杂的数据进行模型培训和评估,这可能导致垃圾堆放系统。为了减轻问题,我们研究了小型清洁数据集是否可以帮助提高远距离监督模型的质量。我们表明,除了对模型进行更令人信服的评估外,一个小的清洁数据集还可以帮助我们构建更强大的Denoising模型。具体而言,我们提出了一个基于影响功能的新标准,用于清洁实例选择。它收集了样本级别的证据,以识别良好实例(这比损失级别的证据更有用)。我们还提出了一种教师研究机制,以控制自动化套件时中间结果的纯度。整个方法是模型不合时宜的,并且在denoising Real(NYT)和合成噪声数据集上都表现出强烈的性能。
Existing distantly supervised relation extractors usually rely on noisy data for both model training and evaluation, which may lead to garbage-in-garbage-out systems. To alleviate the problem, we study whether a small clean dataset could help improve the quality of distantly supervised models. We show that besides getting a more convincing evaluation of models, a small clean dataset also helps us to build more robust denoising models. Specifically, we propose a new criterion for clean instance selection based on influence functions. It collects sample-level evidence for recognizing good instances (which is more informative than loss-level evidence). We also propose a teacher-student mechanism for controlling purity of intermediate results when bootstrapping the clean set. The whole approach is model-agnostic and demonstrates strong performances on both denoising real (NYT) and synthetic noisy datasets.