论文标题
共享16个半导体量子点横梁阵列的共同控制
Shared control of a 16 semiconductor quantum dot crossbar array
论文作者
论文摘要
大量量子位的有效控制是实用量子计算最具挑战性的方面之一。固态量子技术中的当前方法基于蛮力方法,其中每个量子都需要至少一条独特的控制线,这种方法在扩展到所需的数百万量子位时将变得不可持续。在这里,受经典电子中的随机访问体系结构的启发,我们介绍了半导体量子点的共享控制,以有效地在平面锗中操作二维横梁阵列。我们将整个阵列调整为包含16个量子点的整个阵列,并将其调整为几孔状态,为了隔离每个点不成对的旋转,我们将每个位置的奇数孔限制在每个位置。向前迈进,我们建立了一种选择性控制量子点互联耦合的方法,并在超过10 GHz上实现隧道耦合可调性。与可调实验参数相比,控制端子较少的量子电子设备的操作代表了构建可扩展量子技术的引人注目的一步。
The efficient control of a large number of qubits is one of most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line, an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium. We tune the entire array, comprising 16 quantum dots, to the few-hole regime and, to isolate an unpaired spin per dot, we confine an odd number of holes in each site. Moving forward, we establish a method for the selective control of the quantum dots interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz. The operation of a quantum electronic device with fewer control terminals than tunable experimental parameters represents a compelling step forward in the construction of scalable quantum technology.