论文标题

Monin和Rana在定义$ \ bar {m} _ {0,n} $的方程式上的猜想证明

A proof of a conjecture by Monin and Rana on equations defining $\bar{M}_{0,n}$

论文作者

Gillespie, Maria, Griffin, Sean T., Levinson, Jake

论文摘要

Monin and Rana conjectured a set of equations defining the image of the moduli space $\bar{M}_{0,n}$ under an embedding into $\mathbb{P}^1\times \cdots\times \mathbb{P}^{n-3}$ due to Keel and Tevelev and verified the conjecture for $n\leq 8$ using MACAULAY2。我们证明了所有$ n $的猜想。

Monin and Rana conjectured a set of equations defining the image of the moduli space $\bar{M}_{0,n}$ under an embedding into $\mathbb{P}^1\times \cdots\times \mathbb{P}^{n-3}$ due to Keel and Tevelev and verified the conjecture for $n\leq 8$ using Macaulay2. We prove this conjecture for all $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源