论文标题

$ \ mathbb {rp}^n $中不同交叉点的投影线的所有三元空间

The space of all triples of projective lines of distinct intersections in $\mathbb{RP}^n$

论文作者

Yetişer, Ali Berkay

论文摘要

我们研究了$ \ mathbb {rp}^n $中所有射击线的三元组的空间,以使三线中的任何线都在不同的点上与另外两个线相交。我们表明,对于$ n = 2 $和$ 3 $,这些空间在同质上等同于实际的完整标志品种$ flag(\ Mathbb {r}^n)$,分别为$ n = 3 $和$ 4,$,我们明确地计算了相应空间的整体同源性。我们证明,对于任意$ n $,此空间是同等的,相当于$ flag(1,2,3,\ mathbb {r}^{n+1}),$ signature $(0,1,2,3,n+1)$的所有部分标志在$(n+1)$(n+1)$(n+1)$ - $ - $ 1)$ - $ - $ - $ - $ \ mathbb $ \ mathbb {

We study the space of all triples of projective lines in $\mathbb{RP}^n$ such that any line in a triple intersects the two others at distinct points. We show that for $n=2$ and $3$ these spaces are homotopically equivalent to the real complete flag variety $Flag(\mathbb{R}^n)$ for $n=3$ and $4,$ respectively, and we explicitly calculate the integral homology of the corresponding spaces. We prove that for arbitrary $n$, this space is homotopy equivalent to $Flag(1,2,3,\mathbb{R}^{n+1}),$ the variety of all partial flags of signature $(0,1,2,3,n+1)$ in an $(n+1)$-dimensional vector space over $\mathbb{R}.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源