论文标题
基于投票的意见最大化
Voting-based Opinion Maximization
论文作者
论文摘要
我们调查了社交网络中基于投票的意见最大化的新颖问题:在有其他竞争活动的情况下,为目标活动家找到给定数量的种子节点,以便在给定时间范围内最大程度地提高基于投票的目标分数。 最大化文献的大部分影响假设社交网络用户只能在两个离散状态之间切换,即不活动和主动,并且在一次性激活时选择切换的选择会被冻结。实际上,即使有首选意见,用户也可能不会完全鄙视其他意见,并且由于社会影响力而随着时间的推移,偏好水平可能会有所不同。为此,我们采用植根于意见形成和扩散的模型,并使用几个基于投票的分数来确定用户在给定时间范围内对每个多个活动家的投票。 我们的问题是NP-HARD和非管制的各种分数。我们设计贪婪的种子选择算法,并通过三明治近似为我们的评分功能提供质量保证。为了提高效率,我们可以使用质量保证来开发随机步行和基于草图的意见计算。经验结果验证了我们的有效性,效率和可扩展性。
We investigate the novel problem of voting-based opinion maximization in a social network: Find a given number of seed nodes for a target campaigner, in the presence of other competing campaigns, so as to maximize a voting-based score for the target campaigner at a given time horizon. The bulk of the influence maximization literature assumes that social network users can switch between only two discrete states, inactive and active, and the choice to switch is frozen upon one-time activation. In reality, even when having a preferred opinion, a user may not completely despise the other opinions, and the preference level may vary over time due to social influence. To this end, we employ models rooted in opinion formation and diffusion, and use several voting-based scores to determine a user's vote for each of the multiple campaigners at a given time horizon. Our problem is NP-hard and non-submodular for various scores. We design greedy seed selection algorithms with quality guarantees for our scoring functions via sandwich approximation. To improve the efficiency, we develop random walk and sketch-based opinion computation, with quality guarantees. Empirical results validate our effectiveness, efficiency, and scalability.