论文标题
模块化图从eiSenstein积分形式
Modular graph forms from equivariant iterated Eisenstein integrals
论文作者
论文摘要
一个属的封闭串散射幅度的低能扩张引入了无晶状模块化形式的无限家族,称为模块化图形。它们的差异和数量理论特性激发了布朗在最近的数学文献中,来自所谓的eisenstein积分的近期数学文献中替代了非晶体模块化形式。在这项工作中,我们提供了超过深度的首次验证,即布朗的猜想之一,即迭代的Eisenstein积分包含模块化图形。除了在第二和第三的深度上进行各种示例外,我们还阐明了词典的系统,并使布朗的构造的某些要素完全明确地明确了所有订单。
The low-energy expansion of closed-string scattering amplitudes at genus one introduces infinite families of non-holomorphic modular forms called modular graph forms. Their differential and number-theoretic properties motivated Brown's alternative construction of non-holomorphic modular forms in the recent mathematics literature from so-called equivariant iterated Eisenstein integrals. In this work, we provide the first validations beyond depth one of Brown's conjecture that equivariant iterated Eisenstein integrals contain modular graph forms. Apart from a variety of examples at depth two and three, we spell out the systematics of the dictionary and make certain elements of Brown's construction fully explicit to all orders.