论文标题
对爱因斯坦方程的量子校正
Quantum corrections to Einstein's equations
论文作者
论文摘要
在本主论文中,Frobenius Power系列方法用于找到球形对称和静态真空溶液以进行二次和立方重力作用,代表了对爱因斯坦 - 希尔伯特动作的量子校正。在进行了主题的动机和介绍之后,提出了Power Series解决方案。在恢复了Stelle和合作者的二次作用的结果之后,我们发现当存在Weyl Cuxic运算符时,(2,2)的解决方案家族仍然存在,而Schwarzschid-de保姆(1,-1)则不存在。
In this master thesis, the Frobenius power series method is used to find spherically symmetric and static vacuum solutions to quadratic and cubic gravitational actions, representing quantum corrections to the Einstein-Hilbert action. After a motivation to the topic and an introduction, the power series solutions are presented. After recovering the results for the quadratic action of Stelle and collaborators, we found that when the Weyl cubic operator is present, the (2,2) family of solutions is still present while the Schwarzschid-de Sitter-like (1,-1) is not.