论文标题
非整体浮标系统中强大的振荡和边缘模式
Robust Oscillations and Edge Modes in Nonunitary Floquet Systems
论文作者
论文摘要
我们探索一个定期驱动的自旋链家族中的振荡行为,该链经过弱测量,然后进行选择后。随着测量的强度提高,我们发现了向振荡阶段的过渡。通过将这些旋转链映射到自由费米子模型,我们发现这种转变反映在假想方向的间隙的打开中。有趣的是,我们在振荡阶段发现了一个坚固的,纯粹的,边缘$π$ - 模板。我们在复杂的大量频谱和这些边缘模式之间建立了对应关系。这些振荡在数值上被发现稳定在相互作用和混乱中。
We explore oscillatory behaviour in a family of periodically driven spin chains which are subject to a weak measurement followed by post-selection. We discover a transition to an oscillatory phase as the strength of the measurement is increased. By mapping these spin chains to free fermion models, we find that this transition is reflected in the opening of a gap in the imaginary direction. Interestingly, we find a robust, purely real, edge $π$-mode in the oscillatory phase. We establish a correspondence between the complex bulk spectrum and these edge modes. These oscillations are numerically found to be stable against interactions and disorder.