论文标题
时间序列分类的分布式表示学习
Out-of-Distribution Representation Learning for Time Series Classification
论文作者
论文摘要
时间序列分类是现实世界中的重要问题。由于其非平稳属性会随着时间的流逝而变化,因此建立概括以表现出的分布的模型仍然具有挑战性。在本文中,我们建议从分布的角度查看时间序列分类问题。我们认为时间复杂性归因于其中未知的潜在分布。为此,我们建议多元化学习时间序列分类的广义表示。多元化进行了一个迭代过程:它首先通过对抗训练获得了最坏情况下的分布场景,然后与获得的子域的分布匹配。我们还提供了一些理论见解。我们在不同环境中总共有七个数据集进行有关手势识别,语音命令识别,可穿戴压力和影响检测的实验,以及基于传感器的人类活动识别的实验。结果表明,多样化的多样化大大优于其他基线,并通过定性和定量分析有效地表征了潜在分布。代码可在以下网址提供:https://github.com/microsoft/robustlearn。
Time series classification is an important problem in real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions of the obtained sub-domains. We also present some theoretical insights. We conduct experiments on gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition with a total of seven datasets in different settings. Results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions by qualitative and quantitative analysis. Code is available at: https://github.com/microsoft/robustlearn.