论文标题
MIPI 2022挑战较低的摄像头图像恢复:方法和结果
MIPI 2022 Challenge on Under-Display Camera Image Restoration: Methods and Results
论文作者
论文摘要
随着对移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与相机系统中新型算法。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像的发展(MIPI)。为了弥合差距,我们介绍了第一个MIPI挑战,包括五个曲目,这些曲目专注于新型图像传感器和成像算法。在本文中,我们总结并审查了MIPI 2022上的分配摄像头(UDC)图像恢复轨道。总共有167名参与者注册,并在最终测试阶段提交了19个团队。在这项挑战中开发的解决方案在播放摄像机映像恢复后实现了最新的性能。本文提供了本挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
Developing and integrating advanced image sensors with novel algorithms in camera systems are prevalent with the increasing demand for computational photography and imaging on mobile platforms. However, the lack of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). To bridge the gap, we introduce the first MIPI challenge including five tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Under-Display Camera (UDC) Image Restoration track on MIPI 2022. In total, 167 participants were successfully registered, and 19 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Under-Display Camera Image Restoration. A detailed description of all models developed in this challenge is provided in this paper. More details of this challenge and the link to the dataset can be found at https://github.com/mipi-challenge/MIPI2022.