论文标题
使用倾斜干扰白蚁技术对超快光涡流束的自我引用3D表征
Self-referencing 3D characterization of ultrafast optical-vortex beams using tilted interference TERMITES technique
论文作者
论文摘要
飞秒的光脉冲带有光学角动量(OAM),具有螺旋相位前部和超快的时间曲线的有趣特性,可以在非线性光学元件中进行许多应用,强场物理学和激光微型微手机。尽管在实验中深入研究了携带OAM的超快脉冲及其与物质的相互作用,但事实证明,在时空结构域中超快oaM携带光束的三维表征被证明很难实现。常规的测量方案依赖于使用参考脉冲光束,该光束需要在其相位前面进行充分表征,并且与测试的光束具有足够的重叠和一致性,这在很大程度上限制了这些方案的实际应用。在这里,我们演示了一种基于倾斜干涉仪的自我引用设置,该设置可用于测量具有不同拓扑电荷的oaM携带飞秒脉冲的完整时空信息。通过扫描一个干涉仪臂,可以使用倾斜干扰信号获得脉冲空间轮廓上的光谱阶段,并且可以同时检索其相位奇异性周围一个特定位置的光场的时间包络,从而实现三维束重建。这种自我引用技术能够测量时空超快光涡流束,可能会在非线性光学和光 - 摩擦相互作用的田地中找到许多应用。
Femtosecond light pulses carrying optical angular momentums (OAMs), possessing intriguing properties of helical phase fronts and ultrafast temporal profiles, enable many applications in nonlinear optics, strong-field physics and laser micro-machining. While generation of OAM-carrying ultrafast pulses and their interactions with matters have been intensively studied in experiments, three-dimensional characterization of ultrafast OAM-carrying light beams in spatio-temporal domain has, however, proved difficult to achieve. Conventional measurement schemes rely on the use of a reference pulsed light beam which needs to be well-characterized in its phase front and to have sufficient overlap and coherence with the beam under test, largely limiting practical applications of these schemes. Here we demonstrate a self-referencing set-up based on a tilted interferometer that can be used to measure complete spatio-temporal information of OAM-carrying femtosecond pulses with different topological charges. Through scanning one interferometer arm, the spectral phase over the pulse spatial profile can be obtained using the tilted interference signal, and the temporal envelope of the light field at one particular position around its phase singularity can be retrieved simultaneously, enabling three-dimensional beam reconstruction. This self-referencing technique, capable of measuring spatio-temporal ultrafast optical-vortex beams, may find many applications in fields of nonlinear optics and light-matter interactions.