论文标题
部分可观测时空混沌系统的无模型预测
Rethinking the Unpretentious U-net for Medical Ultrasound Image Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Breast tumor segmentation is one of the key steps that helps us characterize and localize tumor regions. However, variable tumor morphology, blurred boundary, and similar intensity distributions bring challenges for accurate segmentation of breast tumors. Recently, many U-net variants have been proposed and widely used for breast tumors segmentation. However, these architectures suffer from two limitations: (1) Ignoring the characterize ability of the benchmark networks, and (2) Introducing extra complex operations increases the difficulty of understanding and reproducing the network. To alleviate these challenges, this paper proposes a simple yet powerful nested U-net (NU-net) for accurate segmentation of breast tumors. The key idea is to utilize U-Nets with different depths and shared weights to achieve robust characterization of breast tumors. NU-net mainly has the following advantages: (1) Improving network adaptability and robustness to breast tumors with different scales, (2) This method is easy to reproduce and execute, and (3) The extra operations increase network parameters without significantly increasing computational cost. Extensive experimental results with twelve state-of-the-art segmentation methods on three public breast ultrasound datasets demonstrate that NU-net has more competitive segmentation performance on breast tumors. Furthermore, the robustness of NU-net is further illustrated on the segmentation of renal ultrasound images. The source code is publicly available on https://github.com/CGPzy/NU-net.