论文标题

通过深入学习青少年数据从纵向MRI数据中预测性别的预测揭示了与大脑结构相关的独特模式和两年内的变化

Prediction of Gender from Longitudinal MRI data via Deep Learning on Adolescent Data Reveals Unique Patterns Associated with Brain Structure and Change over a Two-year Period

论文作者

Bi, Yuda, Abrol, Anees, Fu, Zening, Chen, Jiayu, Liu, Jingyu, Calhoun, Vince

论文摘要

用于预测神经影像数据的深度学习算法在各种应用中显示出巨大的希望。先前的工作表明,利用数据的3D结构的深度学习模型可以在几个学习任务上胜过标准机器学习。但是,该领域的大多数先前研究都集中在成年人的神经影像学数据上。在一项大型纵向发展研究的青少年大脑和认知发展(ABCD)数据集中,我们检查了结构性MRI数据,以预测性别并确定与性别相关的大脑结构变化。结果表明,性别预测准确性异常高(> 97%),训练时期> 200,并且这种准确性随着年龄的增长而增加。在研究任务中被确定为最歧视性的大脑区域包括主要是额叶区域和颞叶。当评估年龄增加两年的性别预测变化时,揭示了一组更广泛的视觉,扣带和孤立区域。我们的发现表明,即使在较小的年龄范围内,甚至在较小的年龄范围内也表明了与性别相关的结构变化模式。这表明,通过查看这些变化与不同的行为和环境因素如何相关,可以研究青春期大脑如何变化。

Deep learning algorithms for predicting neuroimaging data have shown considerable promise in various applications. Prior work has demonstrated that deep learning models that take advantage of the data's 3D structure can outperform standard machine learning on several learning tasks. However, most prior research in this area has focused on neuroimaging data from adults. Within the Adolescent Brain and Cognitive Development (ABCD) dataset, a large longitudinal development study, we examine structural MRI data to predict gender and identify gender-related changes in brain structure. Results demonstrate that gender prediction accuracy is exceptionally high (>97%) with training epochs >200 and that this accuracy increases with age. Brain regions identified as the most discriminative in the task under study include predominantly frontal areas and the temporal lobe. When evaluating gender predictive changes specific to a two-year increase in age, a broader set of visual, cingulate, and insular regions are revealed. Our findings show a robust gender-related structural brain change pattern, even over a small age range. This suggests that it might be possible to study how the brain changes during adolescence by looking at how these changes are related to different behavioral and environmental factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源