论文标题

非线性平衡截断的能量函数的可扩展计算

Scalable Computation of Energy Functions for Nonlinear Balanced Truncation

论文作者

Kramer, Boris, Gugercin, Serkan, Borggaard, Jeff, Balicki, Linus

论文摘要

非线性平衡截断是一种模型订单降低技术,可降低非线性系统的维度,以解释系统的开环或闭环可观察性和可控性方面。到目前为止,它阻止其在大规模系统上的部署的一种计算挑战是,表征可控性和可观察性所需的能量功能是各种高维汉密尔顿 - 雅各布 - (Bellman)方程的解决方案,这些方程在高维度上在计算上是可涉及的。这项工作通过考虑基于泰勒系列的近似来解决非线性平衡核心的一类参数化的汉密尔顿 - 雅各布 - 贝尔曼方程,提出了针对这一挑战的统一方法。公式参数的值提供了开环平衡或各种闭环平衡选项。为了求解泰勒系列近似值的系数与能量函数,所呈现的方法得出了线性张量系统,并大量利用它来求解具有数十亿个未知数的结构性线性系统。算法的强度和可伸缩性在两个半消化的偏微分方程上证明,即汉堡和库拉莫托 - sivashinsky方程。

Nonlinear balanced truncation is a model order reduction technique that reduces the dimension of nonlinear systems in a manner that accounts for either open- or closed-loop observability and controllability aspects of the system. A computational challenges that has so far prevented its deployment on large-scale systems is that the energy functions required for characterization of controllability and observability are solutions of various high-dimensional Hamilton-Jacobi-(Bellman) equations, which are computationally intractable in high dimensions. This work proposes a unifying and scalable approach to this challenge by considering a Taylor-series-based approximation to solve a class of parametrized Hamilton-Jacobi-Bellman equations that are at the core of nonlinear balancing. The value of a formulation parameter provides either open-loop balancing or a variety of closed-loop balancing options. To solve for the coefficients of Taylor-series approximations to the energy functions, the presented method derives a linear tensor system and heavily utilizes it to numerically solve structured linear systems with billions of unknowns. The strength and scalability of the algorithm is demonstrated on two semi-discretized partial differential equations, namely the Burgers and the Kuramoto-Sivashinsky equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源