论文标题

通过线性素描在加权图稀疏中

On Weighted Graph Sparsification by Linear Sketching

论文作者

Chen, Yu, Khanna, Sanjeev, Li, Huan

论文摘要

[AHN-GUHA-MCGREGOR,PODS'12]的开创性工作表明,可以通过在图表上进行接近线性的线性测量值来计算未加权的未经方向图的切割的弹脚。随后的作品还研究了使用线性草图计算其他图形稀疏器的工作,并获得了光谱稀疏器[Kapralov-Lee-Musco-Musco-Sidford,focs'14]的接近线性上限,并获得了第一个非客气上限,用于跨度[Filtser-Kapralov-nouri,Soda'21]。但是,所有这些线性素描算法仅适用于未加权图。 在本文中,我们通过调查了我们称为入射率草图的天然线性草图来启动加权图稀疏性的研究,其中每个测量是入射在单个顶点上的边缘权重的线性组合。我们的结果是: 1。加权切割稀疏:我们给出了一种算法,该算法使用$ \ tilde {o}(nε^{ - 3})$线性测量值计算$(1 +ε)$ - 切割稀疏器,这几乎是最佳的。 2。加权光谱稀疏:我们提供了一种算法,该算法使用$ \ tilde {o}(n^{6/5}ε^{ - 4})$ lineAremears计算$(1 +ε)$ - 光谱稀疏器。随后,我们证明了$ω(n^{21/20-o(1)})$测量的超线性下限,用于计算一些$ o(1)$ - 光谱派漏器,使用发射率草图。 3。加权扳手计算:我们专注于最大/最小边缘权重的图形,其差异为$ o(1)$ factor,并证明,对于发射率草图,〜[filtser-kapralov-nouri,soda'21]获得的上限最佳是最佳的。

A seminal work of [Ahn-Guha-McGregor, PODS'12] showed that one can compute a cut sparsifier of an unweighted undirected graph by taking a near-linear number of linear measurements on the graph. Subsequent works also studied computing other graph sparsifiers using linear sketching, and obtained near-linear upper bounds for spectral sparsifiers [Kapralov-Lee-Musco-Musco-Sidford, FOCS'14] and first non-trivial upper bounds for spanners [Filtser-Kapralov-Nouri, SODA'21]. All these linear sketching algorithms, however, only work on unweighted graphs. In this paper, we initiate the study of weighted graph sparsification by linear sketching by investigating a natural class of linear sketches that we call incidence sketches, in which each measurement is a linear combination of the weights of edges incident on a single vertex. Our results are: 1. Weighted cut sparsification: We give an algorithm that computes a $(1 + ε)$-cut sparsifier using $\tilde{O}(n ε^{-3})$ linear measurements, which is nearly optimal. 2. Weighted spectral sparsification: We give an algorithm that computes a $(1 + ε)$-spectral sparsifier using $\tilde{O}(n^{6/5} ε^{-4})$ linear measurements. Complementing our algorithm, we then prove a superlinear lower bound of $Ω(n^{21/20-o(1)})$ measurements for computing some $O(1)$-spectral sparsifier using incidence sketches. 3. Weighted spanner computation: We focus on graphs whose largest/smallest edge weights differ by an $O(1)$ factor, and prove that, for incidence sketches, the upper bounds obtained by~[Filtser-Kapralov-Nouri, SODA'21] are optimal up to an $n^{o(1)}$ factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源