论文标题

CenterLinedet:高清地图生成的Transformer的道路车道的中心线图检测

CenterLineDet: CenterLine Graph Detection for Road Lanes with Vehicle-mounted Sensors by Transformer for HD Map Generation

论文作者

Xu, Zhenhua, Liu, Yuxuan, Sun, Yuxiang, Liu, Ming, Wang, Lujia

论文摘要

随着自主驾驶技术的快速发展,对高清图(HD)地图的需求不断增长,该图提供了有关交通环境静态部分的可靠且强大的先前信息。作为HD地图中的重要元素之一,Road Lane Centerline对于下游任务(例如预测和计划)至关重要。高清地图中道路车道的手动注释中心线是劳动力密集,昂贵且效率低下的,严重限制了自动驾驶系统的广泛应用。先前的工作很少探索巷中心线检测问题,这是由于泳道中心线的复杂拓扑和严重的重叠问题。在本文中,我们提出了一种名为CenterLinedet的新型方法,以检测自动HD地图生成的车道中心线。我们的CenterLinedet通过模仿学习训练,可以通过迭代有效地检测具有车辆安装的传感器(即六台摄像头和一个激光雷达)的中心线图。由于使用了类似DITR的变压器网络,CenterLinedet可以处理复杂的图形拓扑,例如车道相交。在大规模的公共数据集Nuscenes上评估了所提出的方法。比较结果证明了我们的中心线网络的优势。我们的代码,补充材料和视频演示可在\ href {https://tonyxuqaq.github.io/projects/projects/centerlinedet/} {https://tonyxuqaq.github.io/prothub.io/prodects/prodignts/centerlinedet/}中获得。

With the fast development of autonomous driving technologies, there is an increasing demand for high-definition (HD) maps, which provide reliable and robust prior information about the static part of the traffic environments. As one of the important elements in HD maps, road lane centerline is critical for downstream tasks, such as prediction and planning. Manually annotating centerlines for road lanes in HD maps is labor-intensive, expensive and inefficient, severely restricting the wide applications of autonomous driving systems. Previous work seldom explores the lane centerline detection problem due to the complicated topology and severe overlapping issues of lane centerlines. In this paper, we propose a novel method named CenterLineDet to detect lane centerlines for automatic HD map generation. Our CenterLineDet is trained by imitation learning and can effectively detect the graph of centerlines with vehicle-mounted sensors (i.e., six cameras and one LiDAR) through iterations. Due to the use of the DETR-like transformer network, CenterLineDet can handle complicated graph topology, such as lane intersections. The proposed approach is evaluated on the large-scale public dataset NuScenes. The superiority of our CenterLineDet is demonstrated by the comparative results. Our code, supplementary materials, and video demonstrations are available at \href{https://tonyxuqaq.github.io/projects/CenterLineDet/}{https://tonyxuqaq.github.io/projects/CenterLineDet/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源