论文标题

用于黑框攻击对象检测的大规模多目标方法

A Large-scale Multiple-objective Method for Black-box Attack against Object Detection

论文作者

Liang, Siyuan, Li, Longkang, Fan, Yanbo, Jia, Xiaojun, Li, Jingzhi, Wu, Baoyuan, Cao, Xiaochun

论文摘要

最近的研究表明,即使在攻击者无法访问模型信息的黑框场景中,基于深模型的检测器也容易受到对抗性示例的影响。大多数现有的攻击方法旨在最大程度地减少真正的积极速率,这通常显示出较差的攻击性能,因为可以在攻击的边界周围检测到另一个最佳的边界框,以使其成为新的真实积极的框架。为了解决这一挑战,我们建议最大程度地降低真实的正速率并最大化误报率,这可以鼓励更多的假阳性对象阻止新的真实正面边界框的产生。它被建模为多目标优化(MOP)问题,通用算法可以搜索帕累托(Pareto)最佳选择。但是,我们的任务具有超过200万个决策变量,导致搜索效率较低。因此,我们将标准的遗传算法扩展了随机子集选择和称为GARSDC的分裂和串联,从而显着提高了效率。此外,为了减轻通用算法中人口质量的敏感性,我们利用具有相似骨架的不同检测器之间的可转移性产生了梯度优先人口。与最先进的攻击方法相比,GARSDC在地图中平均减少12.0,在广泛的实验中查询约1000倍。我们的代码可以在https://github.com/liangsiyuan21/ garsdc找到。

Recent studies have shown that detectors based on deep models are vulnerable to adversarial examples, even in the black-box scenario where the attacker cannot access the model information. Most existing attack methods aim to minimize the true positive rate, which often shows poor attack performance, as another sub-optimal bounding box may be detected around the attacked bounding box to be the new true positive one. To settle this challenge, we propose to minimize the true positive rate and maximize the false positive rate, which can encourage more false positive objects to block the generation of new true positive bounding boxes. It is modeled as a multi-objective optimization (MOP) problem, of which the generic algorithm can search the Pareto-optimal. However, our task has more than two million decision variables, leading to low searching efficiency. Thus, we extend the standard Genetic Algorithm with Random Subset selection and Divide-and-Conquer, called GARSDC, which significantly improves the efficiency. Moreover, to alleviate the sensitivity to population quality in generic algorithms, we generate a gradient-prior initial population, utilizing the transferability between different detectors with similar backbones. Compared with the state-of-art attack methods, GARSDC decreases by an average 12.0 in the mAP and queries by about 1000 times in extensive experiments. Our codes can be found at https://github.com/LiangSiyuan21/ GARSDC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源