论文标题
QED $ _3 $启发的共形的Abelian Gauge模型中的扰动计算
Perturbative computation in a QED$_3$-inspired conformal abelian gauge model on the lattice
论文作者
论文摘要
我们在晶格仪理论中执行扰动计算,其相形度量是在非紧凑型Abelian量规场中是二次的,并且是非局限性的,这是受到无质量QED $ _3 $的诱导量规动作的启发。在先前的工作中,我们表明,将费米源耦合到量规模型中,导致了费米昂双线性的相关函数中的非平凡共形数据,这些功能是费米昂电荷$ q $的函数。在本文中,我们计算了这种规格不变的费米子观测值,以订购$ q^2 $的晶格扰动理论,并具有相同的共形度量。我们从尺寸正则化中先前估计值中重现标量异常维度的期望。我们解决了相关函数振幅的晶格调节器依赖性问题。
We perform perturbative computations in a lattice gauge theory with a conformal measure that is quadratic in a non-compact abelian gauge field and is nonlocal, as inspired by the induced gauge action in massless QED$_3$. In a previous work, we showed that coupling fermion sources to the gauge model led to nontrivial conformal data in the correlation functions of fermion bilinears that are functions of charge $q$ of the fermion. In this paper, we compute such gauge invariant fermionic observables to order $q^2$ in lattice perturbation theory with the same conformal measure. We reproduce the expectations for scalar anomalous dimension from previous estimates in dimensional regularization. We address the issue of the lattice regulator dependence of the amplitudes of correlation functions.