论文标题
通过局部注入量子颗粒填充空的格子
Filling an empty lattice by local injection of quantum particles
论文作者
论文摘要
我们通过将其在本地连接到非相互作用的玻色子或费米子的平衡热浴中,研究填充尺寸$ l $的空的量子动力学的量子动力学。我们采用了四种不同的方法,即(i)直接精确数字,(ii)红场方程,(iii)lindblad方程和(iv)量子langevin方程 - 它们在解决时间动力学和稳态的方式方面是独一无二的。我们的设置提供了一个简单的平台,以了解动态和热化方法的基本方面。我们认为的关注数量是晶格中的空间密度谱和玻色子/费米子的总数。空间传播本质上是弹道的,由于平衡,当地职业最终会沉降。局部密度的弹道传播允许通用缩放形式。我们表明,只有在浴室满足详细平衡状况时,才能看到这种普遍性。玻色子和费米子之间的差异以早期生长速率和轮廓的饱和值出现。这里开发的技术适用于任意维度和任意几何形状的系统。
We study the quantum dynamics of filling an empty lattice of size $L$, by connecting it locally with an equilibrium thermal bath that injects non-interacting bosons or fermions. We adopt four different approaches, namely (i) direct exact numerics, (ii) Redfield equation, (iii) Lindblad equation, and (iv) quantum Langevin equation -- which are unique in their ways for solving the time dynamics and the steady-state. Our setup offers a simplistic platform to understand fundamental aspects of dynamics and approach to thermalization. The quantities of interest that we consider are the spatial density profile and the total number of bosons/fermions in the lattice. The spatial spread is ballistic in nature and the local occupation eventually settles down owing to equilibration. The ballistic spread of local density admits a universal scaling form. We show that this universality is only seen when the condition of detailed balance is satisfied by the baths. The difference between bosons and fermions shows up in the early time growth rate and the saturation values of the profile. The techniques developed here are applicable to systems in arbitrary dimensions and for arbitrary geometries.