论文标题

用于计算可达状态密度的案例研究,以进行安全自动运动计划

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

论文作者

Meng, Yue, Qiu, Zeng, Waez, Md Tawhid Bin, Fan, Chuchu

论文摘要

到达状态的密度可以帮助理解安全至关重要的系统的风险,尤其是在最坏情况下的情况过于保守的情况下。最近的工作提供了一种数据驱动的方法来计算自主系统在线的前进状态的密度分布。在本文中,我们研究了这种方法与模型预测控制在不确定性下的可验证安全路径计划的结合。我们首先使用学习的密度分布来计算在线碰撞的风险。如果这种风险超过可接受的阈值,我们的方法将计划在先前轨迹周围采取新的途径,并在阈值以下碰撞风险。我们的方法非常适合处理具有不确定性和复杂动力学的系统,因为我们的数据驱动方法不需要系统动力学的分析形式,并且可以使用不确定性的任意初始分布来估算正向状态密度。我们设计了两个具有挑战性的场景(自动驾驶和气垫船控制),以在系统不确定性下的障碍物中进行安全运动计划。我们首先表明我们的密度估计方法可以达到与基于蒙特卡洛的方法相似的准确性,同时仅使用0.01倍训练样品。通过利用估计的风险,我们的算法在执行0.99以上的安全率时达到目标达到最高成功率。

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源