论文标题

由碳植入稀薄微观结构形成的钻石中的光谱稳定的氮呈现中心

Spectrally stable nitrogen-vacancy centers in diamond formed by carbon implantation into thin microstructures

论文作者

Yurgens, V., Corazza, A., Zuber, J. A., Gruet, M., Kasperczyk, M., Shields, B. J., Warburton, R. J., Fontana, Y., Maletinsky, P.

论文摘要

Diamond的氮气视口中心(NV)具有出色的自旋连贯性和光学自旋初始化和读数的便利性,越来越多地用作量子传感器,也被用作量子网络的基础。采用光子结构来最大化这些应用中的光子收集效率通常会导致发射器的光学线宽扩大,这通常是通过氮离子植入而产生的。通过研究表明,只有天然氮原子有助于光学相干的NV,一个自然的结论是避免完全植入,或者通过替代空位产生的方法替代氮植入。在这里,我们证明碳离子的植入产生了NVS的可比密度作为氮离子的植入,并且即使在薄钻石微观结构中,它也会导致具有光学线宽和低电荷水平的NV种群。我们测量的NV线宽中位数为150 MHz的结构,该结构比5 $ m $ m的结构较薄,没有将线宽增加到最薄的测量结构1.9 $μ$ m的趋势。我们提出了一种修改的NV创建程序,其中在钻石制造过程之前而不是在植入后进行植入,并在植入不同离子能量和流体的多个样品中确认我们的结果。

The nitrogen-vacancy center (NV) in diamond, with its exceptional spin coherence and convenience in optical spin initialization and readout, is increasingly used both as a quantum sensor and as a building block for quantum networks. Employing photonic structures for maximizing the photon collection efficiency in these applications typically leads to broadened optical linewidths for the emitters, which are commonly created via nitrogen ion implantation. With studies showing that only native nitrogen atoms contribute to optically coherent NVs, a natural conclusion is to either avoid implantation completely, or substitute nitrogen implantation by an alternative approach to vacancy creation. Here, we demonstrate that implantation of carbon ions yields a comparable density of NVs as implantation of nitrogen ions, and that it results in NV populations with narrow optical linewidths and low charge-noise levels even in thin diamond microstructures. We measure a median NV linewidth of 150 MHz for structures thinner than 5 $μ$m, with no trend of increasing linewidths down to the thinnest measured structure of 1.9 $μ$m. We propose a modified NV creation procedure in which the implantation is carried out after instead of before the diamond fabrication processes, and confirm our results in multiple samples implanted with different ion energies and fluences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源