论文标题

Evons:用于假和真实新闻病毒性分析和预测的数据集

Evons: A Dataset for Fake and Real News Virality Analysis and Prediction

论文作者

Krstovski, Kriste, Ryu, Angela Soomin, Kogut, Bruce

论文摘要

我们介绍了一篇新的新闻文章集,该文章源自伪造和真实的新闻媒体来源,以分析和预测新闻病毒性。与现有的伪造新闻数据集不同,该数据集包含索赔或新闻文章的标题和身体,在此集合中,每个文章都有Facebook参与数的支持,我们认为这是文章病毒性的指标。此外,我们还提供了文章说明和缩略图图像,与该文章在Facebook上共享。这些图像是用对象标签和颜色属性自动注释的。使用基于云的视觉分析工具,还分析了面部的缩略图图像,并用面部属性注释了检测到的面部。我们从经验上研究了该集合在文章病毒性预测的示例任务中的使用。

We present a novel collection of news articles originating from fake and real news media sources for the analysis and prediction of news virality. Unlike existing fake news datasets which either contain claims or news article headline and body, in this collection each article is supported with a Facebook engagement count which we consider as an indicator of the article virality. In addition we also provide the article description and thumbnail image with which the article was shared on Facebook. These images were automatically annotated with object tags and color attributes. Using cloud based vision analysis tools, thumbnail images were also analyzed for faces and detected faces were annotated with facial attributes. We empirically investigate the use of this collection on an example task of article virality prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源