论文标题
超重度塑性变形的超级功能材料
Superfunctional materials by ultra-severe plastic deformation
论文作者
论文摘要
超功能材料定义为材料,特定特性优于工程材料的功能。许多研究引入了严重的塑性变形(SPD),是改善各种金属和非金属材料的功能和机械性能的有效过程。此外,Ultra -SPD的概念 - 引入超过1000多个剪切菌株,以将剪切相的厚度降低至与原子距离相当的水平 - 最近用于合成新型的超级功能材料。在本文中,讨论了Ultra-SPD在控制原子扩散和相变和具有超功能特性的新材料中的应用。 Ultra-SPD实现的主要特性包括:(i)新的不混溶的可耐铝合金的高温热稳定性; (ii)首次在镁和铝合金中首次室温超塑性; (iii)纳米金属间代理中的高强度和高可塑性; (iv)生物相容性二元和高渗透合金中低弹性模量和高硬度; (v)NB-TI合金中的超导性和高强度; (vi)首次在镁合金中储存室温氢; (vii)高氧化氧化物和氧气上的二氧化碳的产生,氧气产生和二氧化碳转化为新的光催化剂家族。
Superfunctional materials are defined as materials with specific properties being superior to the functions of engineering materials. Numerous studies introduced severe plastic deformation (SPD) as an effective process to improve the functional and mechanical properties of various metallic and non-metallic materials. Moreover, the concept of ultra-SPD - introducing shear strains over 1000 to reduce the thickness of sheared phases to levels comparable to atomic distances - was recently utilized to synthesize novel superfunctional materials. In this article, the application of ultra-SPD for controlling atomic diffusion and phase transformation and synthesizing new materials with superfunctional properties is discussed. The main properties achieved by ultra-SPD include: (i) high-temperature thermal stability in new immiscible age-hardenable aluminum alloys; (ii) room-temperature superplasticity for the first time in magnesium and aluminum alloys; (iii) high strength and high plasticity in nanograined intermetallics; (iv) low elastic modulus and high hardness in biocompatible binary and high-entropy alloys; (v) superconductivity and high strength in the Nb-Ti alloys; (vi) room-temperature hydrogen storage for the first time in magnesium alloys; and (vii) superior photocatalytic hydrogen production, oxygen production, and carbon dioxide conversion on high-entropy oxides and oxynitrides as a new family of photocatalysts.