论文标题
平面的分类在有限顺序的有限场上与Veronese表面相交
A classification of planes intersecting the Veronese surface over finite fields of even order
论文作者
论文摘要
在本文中,我们有助于将部分对称的张量分类为$ \ mathbb {f} _q^3 \ otimes s^2 \ mathbb {f} _q^3 $,$ q $,偶数,通过分类的平面分类,将veronese surface $ \ m nations $ \ mathcal {v}($ nife contional ctibly contional) $ k \ leq \ rm {pgl}(6,q)$,$ k \ cong \ rm {pgl}(3,q)$,稳定Veronese Surface。我们还确定了每个轨道的一组几何和组合不变性。
In this paper we contribute towards the classification of partially symmetric tensors in $\mathbb{F}_q^3\otimes S^2\mathbb{F}_q^3$, $q$ even, by classifying planes which intersect the Veronese surface $\mathcal{V}(\mathbb{F}_q)$ in at least one point, under the action of $K\leq \rm{PGL}(6,q)$, $K\cong \rm{PGL}(3,q)$, stabilising the Veronese surface. We also determine a complete set of geometric and combinatorial invariants for each of the orbits.