论文标题
当协变量和标签变化时,估计和解释模型性能
Estimating and Explaining Model Performance When Both Covariates and Labels Shift
论文作者
论文摘要
部署的机器学习(ML)模型经常遇到与培训数据不同的新用户数据。因此,估计给定模型在新数据上的性能是朝着可靠的ML应用程序迈出的重要一步。但是,这是非常具有挑战性的,因为数据分布可以以灵活的方式变化,并且我们可能没有新数据上的任何标签,这在监视设置时通常是这种情况。在本文中,我们提出了一个新的分配移位模型,即稀疏关节移位(SJS),该模型考虑了标签和一些特征的关节移位。这将统一并概括了几种现有的偏移模型,包括标签移位和稀疏协变量移位,仅考虑边际特征或标签分布偏移。我们描述了SJS可识别的数学条件。我们进一步提出了See,这是一个算法框架,以表征SJS下的分布变化,并估计模型在没有任何标签的新数据上的性能。我们在具有各种ML模型的几个现实世界数据集上进行了广泛的实验。在不同的数据集和分布变化中,看到对现有方法的误差改善(最多达到数量级)的显着(最多)。
Deployed machine learning (ML) models often encounter new user data that differs from their training data. Therefore, estimating how well a given model might perform on the new data is an important step toward reliable ML applications. This is very challenging, however, as the data distribution can change in flexible ways, and we may not have any labels on the new data, which is often the case in monitoring settings. In this paper, we propose a new distribution shift model, Sparse Joint Shift (SJS), which considers the joint shift of both labels and a few features. This unifies and generalizes several existing shift models including label shift and sparse covariate shift, where only marginal feature or label distribution shifts are considered. We describe mathematical conditions under which SJS is identifiable. We further propose SEES, an algorithmic framework to characterize the distribution shift under SJS and to estimate a model's performance on new data without any labels. We conduct extensive experiments on several real-world datasets with various ML models. Across different datasets and distribution shifts, SEES achieves significant (up to an order of magnitude) shift estimation error improvements over existing approaches.