论文标题
多项式在双曲线几何和动力学中的分解
Factorization of polynomials in hyperbolic geometry and dynamics
论文作者
论文摘要
使用分解定理进行稀疏多项式,我们计算Whitehead Link的Dehn填充物的痕迹场,并(假设Lehmer的猜想)小型扩张伪-Anosov映射和图8节填充物的痕迹的最小多项式。这些结果取决于Q足够大的痕量场的程度。
Using factorization theorems for sparse polynomials, we compute the trace field of Dehn fillings of the Whitehead link, and (assuming Lehmer's Conjecture) the minimal polynomial of the small dilatation pseudo-Anosov maps and the trace field of fillings of the figure-8 knot. These results depend on the degrees of the trace fields over Q being sufficiently large.