论文标题

国王竞技场的荣誉:竞争性强化学习的概括环境

Honor of Kings Arena: an Environment for Generalization in Competitive Reinforcement Learning

论文作者

Wei, Hua, Chen, Jingxiao, Ji, Xiyang, Qin, Hongyang, Deng, Minwen, Li, Siqin, Wang, Liang, Zhang, Weinan, Yu, Yong, Liu, Lin, Huang, Lanxiao, Ye, Deheng, Fu, Qiang, Yang, Wei

论文摘要

本文介绍了Kings Arena的荣誉,Kings Arena是基于国王荣誉的增强学习(RL)环境,这是世界上最受欢迎的游戏之一。与以前大多数工作中研究的其他环境相比,我们的人对竞争性强化学习提出了新的概括挑战。这是一个与对手竞争的代理商的多代理问题;它需要概括能力,因为它具有控制和不同的对手竞争的不同目标。我们描述了国王域名荣誉的观察,动作和奖励规范,并提供了一个基于python的开源界面,以与游戏引擎进行通信。我们为纪念国王竞技场的二十个目标英雄提供了各种任务,并为具有可行的计算资源的基于RL的方法提供了初始基线结果。最后,我们展示了国王竞技场的荣誉和对挑战的可能补救措施所面临的概括挑战。所有软件(包括环境级)均可在https://github.com/tencent-ailab/hok_env上公开获得。该文档可在https://aiarena.tencent.com/hok/doc/上找到。

This paper introduces Honor of Kings Arena, a reinforcement learning (RL) environment based on Honor of Kings, one of the world's most popular games at present. Compared to other environments studied in most previous work, ours presents new generalization challenges for competitive reinforcement learning. It is a multi-agent problem with one agent competing against its opponent; and it requires the generalization ability as it has diverse targets to control and diverse opponents to compete with. We describe the observation, action, and reward specifications for the Honor of Kings domain and provide an open-source Python-based interface for communicating with the game engine. We provide twenty target heroes with a variety of tasks in Honor of Kings Arena and present initial baseline results for RL-based methods with feasible computing resources. Finally, we showcase the generalization challenges imposed by Honor of Kings Arena and possible remedies to the challenges. All of the software, including the environment-class, are publicly available at https://github.com/tencent-ailab/hok_env . The documentation is available at https://aiarena.tencent.com/hok/doc/ .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源