论文标题

低成本机器学习方法,用于预测过渡金属磷激发态特性

Low-cost machine learning approach to the prediction of transition metal phosphor excited state properties

论文作者

Terrones, Gianmarco, Duan, Chenru, Nandy, Aditya, Kulik, Heather J.

论文摘要

光活性虹膜复合物的应用广泛,因为它们的应用从照明到光催化。但是,这些复合物的激发状态性质预测从初始方法(例如时间依赖性密度功能理论(TDDFT))挑战,从精度和计算成本的角度来看,使高吞吐量虚拟筛选(HTV)复杂化。相反,我们利用低成本的机器学习(ML)模型来预测光活性虹膜复合物的激发状态特性。我们使用1,380个虹膜络合物的实验数据来训练和评估ML模型,并确定最佳和最可转移的模型是从低成本功能理论紧密结合计算的电子结构特征训练的模型。使用这些模型,我们预测所考虑的三个激发态性能,即磷光的平均发射能,激发态寿命和发射光谱积分,具有具有或取代TDDFT的精度竞争性。我们进行特征重要性分析,以确定哪些虹膜复杂属性控制激发态性质,并通过明确的例子来验证这些趋势。为了证明如何将ML模型用于HTV和化学发现的加速度,我们策划了一组新型的假设虹膜络合物,并确定有希望的新磷剂的配体。

Photoactive iridium complexes are of broad interest due to their applications ranging from lighting to photocatalysis. However, the excited state property prediction of these complexes challenges ab initio methods such as time-dependent density functional theory (TDDFT) both from an accuracy and a computational cost perspective, complicating high throughput virtual screening (HTVS). We instead leverage low-cost machine learning (ML) models to predict the excited state properties of photoactive iridium complexes. We use experimental data of 1,380 iridium complexes to train and evaluate the ML models and identify the best-performing and most transferable models to be those trained on electronic structure features from low-cost density functional theory tight binding calculations. Using these models, we predict the three excited state properties considered, mean emission energy of phosphorescence, excited state lifetime, and emission spectral integral, with accuracy competitive with or superseding TDDFT. We conduct feature importance analysis to identify which iridium complex attributes govern excited state properties and we validate these trends with explicit examples. As a demonstration of how our ML models can be used for HTVS and the acceleration of chemical discovery, we curate a set of novel hypothetical iridium complexes and identify promising ligands for the design of new phosphors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源