论文标题

基于交互式知识的多目标进化算法框架实用优化问题

An Interactive Knowledge-based Multi-objective Evolutionary Algorithm Framework for Practical Optimization Problems

论文作者

Ghosh, Abhiroop, Deb, Kalyanmoy, Goodman, Erik, Averill, Ronald

论文摘要

经验丰富的用户通常在解决现实世界优化问题时具有有用的知识和直觉。用户知识可以作为可变关系的配方,以帮助优化算法更快地找到良好的解决方案。也可以自动从在优化运行中在中间迭代中发现的高性能解决方案中自动学习这种变量的相互作用 - 一种称为Innovization的过程。如果用户对这些关系进行审查,则可以在新生成的解决方案中执行,以将优化算法引导到搜索空间中实际上有希望的区域。对于大规模问题,这种变量关系的数量可能很高,就会出现挑战。本文提出了一种基于交互式知识的进化多目标优化(IK-EMO)框架,该框架将隐藏的可变关系提取为通过不断发展的高性能解决方案,与用户共享的知识,以接收反馈,并将其应用于优化过程,以提高其有效性。知识提取过程使用系统而优雅的图形分析方法,该方法与数量的变量相当。在三个大规模的现实世界工程设计问题上证明了拟议的IK-EMO的工作。提出的知识提取过程的简单性和优雅性以及高性能解决方案的实现迅速表明了所提出的框架的力量。提出的结果应激发进一步的基于相互作用的优化研究,以实践其常规使用。

Experienced users often have useful knowledge and intuition in solving real-world optimization problems. User knowledge can be formulated as inter-variable relationships to assist an optimization algorithm in finding good solutions faster. Such inter-variable interactions can also be automatically learned from high-performing solutions discovered at intermediate iterations in an optimization run - a process called innovization. These relations, if vetted by the users, can be enforced among newly generated solutions to steer the optimization algorithm towards practically promising regions in the search space. Challenges arise for large-scale problems where the number of such variable relationships may be high. This paper proposes an interactive knowledge-based evolutionary multi-objective optimization (IK-EMO) framework that extracts hidden variable-wise relationships as knowledge from evolving high-performing solutions, shares them with users to receive feedback, and applies them back to the optimization process to improve its effectiveness. The knowledge extraction process uses a systematic and elegant graph analysis method which scales well with number of variables. The working of the proposed IK-EMO is demonstrated on three large-scale real-world engineering design problems. The simplicity and elegance of the proposed knowledge extraction process and achievement of high-performing solutions quickly indicate the power of the proposed framework. The results presented should motivate further such interaction-based optimization studies for their routine use in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源