论文标题
使用运动中的结构的混合电缆驱动的机器人,用于非破坏性叶状植物监测和质量估算
A Hybrid Cable-Driven Robot for Non-Destructive Leafy Plant Monitoring and Mass Estimation using Structure from Motion
论文作者
论文摘要
我们提出了一种新型混合电缆的机器人,并使用机械手和摄像头,用于在垂直水培农场中进行高临界性,中型植物监测,并以示例应用显示出无损的植物质量估计。具有高时间和空间分辨率的植物监测对农民和研究人员都很重要,以检测异常并开发植物生长的预测模型。高质量,现成的结构(SFM)和摄影测量包的可用性使一个充满活力的机器人社区能够将计算机视觉应用于非破坏性植物监测。虽然现有方法倾向于专注于高通量(例如卫星,无人机(UAV),车辆安装,传送带带有图像)或高准确性/鲁棒性(例如,转弯表扫描仪或机器人组)(我们建议使用中等自动的机器人)进行高度准确的训练(我们提出高度准确性的)。我们的设计配对了电缆驱动的平行机器人(CDPR)的工作空间可伸缩性与4度(DOF)机器人臂的敏捷性,以自主对许多植物进行自主对许多植物的想象。我们描述了我们的机器人设计,并通过从64个观点收集54种植物的每日照片来实验证明它。我们表明,我们的方法可以产生科学有用的测量结果,在初始校准后完全自主运行,并产生更好的重建和植物特性估计值(例如无用的方法)。作为应用程序,我们表明,我们的系统可以成功估计植物质量,平均绝对误差(MAE)为0.586g,并且在用于对质量与年龄之间关系进行假设测试时,会产生与地面真实数据相当的P值(分别为p = 0.0020和p = 0.0016)。
We propose a novel hybrid cable-based robot with manipulator and camera for high-accuracy, medium-throughput plant monitoring in a vertical hydroponic farm and, as an example application, demonstrate non-destructive plant mass estimation. Plant monitoring with high temporal and spatial resolution is important to both farmers and researchers to detect anomalies and develop predictive models for plant growth. The availability of high-quality, off-the-shelf structure-from-motion (SfM) and photogrammetry packages has enabled a vibrant community of roboticists to apply computer vision for non-destructive plant monitoring. While existing approaches tend to focus on either high-throughput (e.g. satellite, unmanned aerial vehicle (UAV), vehicle-mounted, conveyor-belt imagery) or high-accuracy/robustness to occlusions (e.g. turn-table scanner or robot arm), we propose a middle-ground that achieves high accuracy with a medium-throughput, highly automated robot. Our design pairs the workspace scalability of a cable-driven parallel robot (CDPR) with the dexterity of a 4 degree-of-freedom (DoF) robot arm to autonomously image many plants from a variety of viewpoints. We describe our robot design and demonstrate it experimentally by collecting daily photographs of 54 plants from 64 viewpoints each. We show that our approach can produce scientifically useful measurements, operate fully autonomously after initial calibration, and produce better reconstructions and plant property estimates than those of over-canopy methods (e.g. UAV). As example applications, we show that our system can successfully estimate plant mass with a Mean Absolute Error (MAE) of 0.586g and, when used to perform hypothesis testing on the relationship between mass and age, produces p-values comparable to ground-truth data (p=0.0020 and p=0.0016, respectively).