论文标题

具有平行处理,批处理和异质服务要求的云的容量分配

Capacity Allocation for Clouds with Parallel Processing, Batch Arrivals, and Heterogeneous Service Requirements

论文作者

Furman, Eugene, Senderovich, Arik, Bergsma, Shane, Beck, J. Christopher

论文摘要

问题定义:为云服务分配足够的能力是一项具有挑战性的任务,尤其是在需求是随时间变化,异质性,包含批处理的情况下,需要多种类型的处理资源。在这种情况下,提供商决定是否保留其能力的部分工作班或以灵活的方式提供。方法论/结果:与云服务的全球提供商华为云合作,我们提出了一项启发式政策,该政策将多种类型的资源分配给工作,并满足其预先指定的服务水平协议(SLA)。我们将系统建模为具有并行处理和多种类型资源的多类排队网络,其中到达(即虚拟机和容器)遵循随时间变化的模式,并需要每个资源的至少一个单位进行处理。虽然虚拟机不立即离开,但容器可以加入队列。我们引入了所提供的系统的载荷的扩散近似,并研究了与观察到的数据相比其保真度。然后,我们开发了一种启发式方法,该方法利用了这种近似值来确定满足具有完全柔性服务器系统中概率SLA的能力水平。管理含义:使用华为云的代表性8天期间,使用云计算请求的数据集,我们表明,与保留资源的基准相比,我们的启发式策略可降低20%的容量能力和更好的服务质量。此外,我们表明,由我们的政策引起的系统利用率优于基准,即,在大多数情况下,它意味着资源的空转较小。因此,我们的方法使云操作员既可以降低成本并实现更好的性能。

Problem Definition: Allocating sufficient capacity to cloud services is a challenging task, especially when demand is time-varying, heterogeneous, contains batches, and requires multiple types of resources for processing. In this setting, providers decide whether to reserve portions of their capacity to individual job classes or to offer it in a flexible manner. Methodology/results: In collaboration with Huawei Cloud, a worldwide provider of cloud services, we propose a heuristic policy that allocates multiple types of resources to jobs and also satisfies their pre-specified service level agreements (SLAs). We model the system as a multi-class queueing network with parallel processing and multiple types of resources, where arrivals (i.e., virtual machines and containers) follow time-varying patterns and require at least one unit of each resource for processing. While virtual machines leave if they are not served immediately, containers can join a queue. We introduce a diffusion approximation of the offered load of such system and investigate its fidelity as compared to the observed data. Then, we develop a heuristic approach that leverages this approximation to determine capacity levels that satisfy probabilistic SLAs in the system with fully flexible servers. Managerial Implications: Using a data set of cloud computing requests over a representative 8-day period from Huawei Cloud, we show that our heuristic policy results in a 20% capacity reduction and better service quality as compared to a benchmark that reserves resources. In addition, we show that the system utilization induced by our policy is superior to the benchmark, i.e., it implies less idling of resources in most instances. Thus, our approach enables cloud operators to both reduce costs and achieve better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源