论文标题

避免列表的方向

List-avoiding orientations

论文作者

Bradshaw, Peter, Chen, Yaobin, Ma, Hao, Mohar, Bojan, Wu, Hehui

论文摘要

给定一个$ f(v)$ f(v)$ f(g)$中的$ f(v)$的图形$ g $,$ g $ g $的$ f $ - 避免$ f $ g $的方向是$ deg^+(v)\ in f(v)in f(v)$ in f(v)$ in f(v)$ in f(v)$ in f pertertex $ v $ v $。 Akbari,Dalirrooyfard,Ehsani,Ozeki和Sherkati猜想,如果$ | f(v)| <\ frac {1} {2} deg(v)$ in v(g)$中的每个$ v \,然后$ g $具有$ f $ - 避免的方向,他们表明,当$ \ frac {1} {2} $替换为$ \ frac {1} $时,此语句是正确的。在本文中,我们通过证明$ | f(v)|迈出了这一猜想的一步。 <\ lfloor \ frac {1} {3} deg(v)\ rfloor $对于每个顶点$ v $,然后$ g $具有$ f $ - 避免的方向。此外,我们表明,如果$ g $的最大程度是最低度的次指定性,则可以将$ \ frac {1} {3} $的系数增加到$ \ sqrt {2} -1 -o(1 -o(1)-o(1)\ of of 0.414 $。我们的主要工具是基于Alon和Tarsi组合的Nullstellensatz存在$ F $避免$ F $的方向的新的足够条件。

Given a graph $G$ with a set $F(v)$ of forbidden values at each $v \in V(G)$, an $F$-avoiding orientation of $G$ is an orientation in which $deg^+(v) \not \in F(v)$ for each vertex $v$. Akbari, Dalirrooyfard, Ehsani, Ozeki, and Sherkati conjectured that if $|F(v)| < \frac{1}{2} deg(v)$ for each $v \in V(G)$, then $G$ has an $F$-avoiding orientation, and they showed that this statement is true when $\frac{1}{2}$ is replaced by $\frac{1}{4}$. In this paper, we take a step toward this conjecture by proving that if $|F(v)| < \lfloor \frac{1}{3} deg(v) \rfloor$ for each vertex $v$, then $G$ has an $F$-avoiding orientation. Furthermore, we show that if the maximum degree of $G$ is subexponential in terms of the minimum degree, then this coefficient of $\frac{1}{3}$ can be increased to $\sqrt{2} - 1 - o(1) \approx 0.414$. Our main tool is a new sufficient condition for the existence of an $F$-avoiding orientation based on the Combinatorial Nullstellensatz of Alon and Tarsi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源