论文标题

基于机器学习从多普勒回声图像中的边界条件提取,用于患者特定的主动脉骨质:计算流体动力学研究

Machine Learning based Extraction of Boundary Conditions from Doppler Echo Images for Patient Specific Coarctation of the Aorta: Computational Fluid Dynamics Study

论文作者

Punabantu, Vincent Milimo Masilokwa, Ngoepe, Malebogo, Mishra, Amit Kumar, Aldersley, Thomas, Lawrenson, John, Zuhlke, Liesl

论文摘要

主动脉(COA)患者特定的计算流体动力学(CFD)研究的目的 - 在资源约束设置中的研究受到可用的成像方式和速度数据采集的可用成像方式的限制。多普勒超声心动图被视为合适的速度获取方式,因为其可用性和安全性较高。这项研究旨在调查经典机器学习(ML)方法的应用,以创建一种从多普勒超声心动图图像获得边界条件(BCS)的适当和强大的方法,用于使用CFD进行血流动力学建模。 方法 - 我们提出的方法结合了ML和CFD,以模拟感兴趣区域内的血流动力学流量。该方法的关键特征是使用ML模型来校准CFD模型的入口和出口边界条件(BCS)。 ML模型的关键输入变量是患者心率,因为这是研究中测得的血管随时间变化的参数。 ANSYS Fluent用于研究的CFD成分,而Scikit-Learn Python库则用于ML分量。 结果 - 我们在干预前验证了针对严重COA的实际临床案例的方法。将我们的模拟的最大缩回速度与从研究中使用的几何形状获得的患者获得的测量最大骨质速度进行了比较。在用于获得BCS的5 mL模型中,顶部模型在测得的最大骨质速度的5 \%之内。 结论 - 该框架表明,它能够考虑在测量之间考虑患者心率的变化。因此,当在每个血管上缩放心率时,可以在生理上逼真的BC计算,同时提供合理准确的溶液。

Purpose- Coarctation of the Aorta (CoA) patient-specific computational fluid dynamics (CFD) studies in resource constrained settings are limited by the available imaging modalities for geometry and velocity data acquisition. Doppler echocardiography has been seen as a suitable velocity acquisition modality due to its higher availability and safety. This study aimed to investigate the application of classical machine learning (ML) methods to create an adequate and robust approach for obtaining boundary conditions (BCs) from Doppler Echocardiography images, for haemodynamic modeling using CFD. Methods- Our proposed approach combines ML and CFD to model haemodynamic flow within the region of interest. With the key feature of the approach being the use of ML models to calibrate the inlet and outlet boundary conditions (BCs) of the CFD model. The key input variable for the ML model was the patients heart rate as this was the parameter that varied in time across the measured vessels within the study. ANSYS Fluent was used for the CFD component of the study whilst the scikit-learn python library was used for the ML component. Results- We validated our approach against a real clinical case of severe CoA before intervention. The maximum coarctation velocity of our simulations were compared to the measured maximum coarctation velocity obtained from the patient whose geometry is used within the study. Of the 5 ML models used to obtain BCs the top model was within 5\% of the measured maximum coarctation velocity. Conclusion- The framework demonstrated that it was capable of taking variations of the patients heart rate between measurements into account. Thus, enabling the calculation of BCs that were physiologically realistic when the heart rate was scaled across each vessel whilst providing a reasonably accurate solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源