论文标题

$ u $ -gibbs的独特性在$ \ mathbb {t}^4 $上的双曲线偏斜产品

Uniqueness of $u$-Gibbs measures for hyperbolic skew products on $\mathbb{T}^4$

论文作者

Crovisier, Sylvain, Obata, Davi, Poletti, Mauricio

论文摘要

我们在$ \ mathbb {t}^4 $上研究了某些类别均匀的双曲线偏度产品的$ U $ -GIBBS度量。这些系统具有强大的不稳定和弱的方向。我们表明,$ c^r $ dense和$ c^2 $ - 在此集合中,每个$ u $ -gibbs度量是SRB,尤其是这样的措施。作为此应用,我们可以获得强烈的不稳定叶面的最低限度。

We study the $u$-Gibbs measures of a certain class of uniformly hyperbolic skew products on $\mathbb{T}^4$. These systems have a strong unstable and a weak unstable directions. We show that $C^r$-dense and $C^2$-open in this set every $u$-Gibbs measure is SRB, in particular, there is only one such measure. As an application of this, we can obtain the minimality of the strong unstable foliation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源