论文标题

5D Myers-Perry几何形状的地平线上的狄拉克方程:变量的分离,径向渐近行为和哈密顿形式主义

The Dirac equation across the horizons of the 5D Myers-Perry geometry : Separation of variables, radial asymptotic behaviour and Hamiltonian formalism

论文作者

Wang, Qiu Shi

论文摘要

我们通过定义Eddington-Finkelstein-type坐标来分析通过事件扩展5D Myers-Perry指标。然后,我们使用正顺序的形式主义在巨大的迪拉克方程上制定和执行变量的分离,并分析了径向普通微分方程(ODE)的地平线和无穷大的渐近行为。利用Finster和Röken和Stone的配方的基本自我接触性结果,我们获得了零质量和适当有界频谱的Dirac传播器的整体频谱表示,就Dirac Hamiltonian的分解而言,可以用Green的功能来表达Radial Odode的功能。

We analytically extend the 5D Myers-Perry metric through the event and Cauchy horizons by defining Eddington-Finkelstein-type coordinates. Then, we use the orthonormal frame formalism to formulate and perform separation of variables on the massive Dirac equation, and analyse the asymptotic behaviour at the horizons and at infinity of the solutions to the radial ordinary differential equation (ODE) thus obtained. Using the essential self-adjointness result of Finster and Röken and Stone's formula, we obtain an integral spectral representation of the Dirac propagator for spinors with low masses and suitably bounded frequency spectra in terms of resolvents of the Dirac Hamiltonian, which can in turn be expressed in terms of Green's functions of the radial ODE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源