论文标题
具有强光耦合的系统中的明亮和深色孤子:精确的解决方案和数值模拟
Bright and dark solitons in the systems with strong light-matter coupling: exact solutions and numerical simulations
论文作者
论文摘要
从理论上讲,我们在实验相关的杂种系统中研究明亮和深色的孤子,其特征在于强烈的耦合。我们发现,相应的两个组件模型支持各种共存的移动孤子,包括零背景和非零背景的明亮孤子,深灰色和灰色灰色的深色孤子。通过将两个组分问题的问题减少到具有立方Quintic非线性的单个固定方程中,以分析形式找到溶液。所有发现的解决方案在同一集合参数下并存,但是,在正确定义的线性极限下,将线性波的不同分支接近北极星分散关系的不同分支。具有零背景的明亮孤子具有振荡量稳定性阈值,可以与连续频谱分支边缘之间的共振有关。 `半血统的黑灰色和非血统灰灰色的孤子子在模量不稳定性阈值以下的广泛参数范围内是稳定的,而恒定振幅基座上的明亮孤子是不稳定的。
We theoretically study bright and dark solitons in an experimentally relevant hybrid system characterized by strong light-matter coupling. We find that the corresponding two-component model supports a variety of coexisting moving solitons including bright solitons on zero and nonzero background, dark-gray and gray-gray dark solitons. The solutions are found in the analytical form by reducing the two-component problem to a single stationary equation with cubic-quintic nonlinearity. All found solutions coexist under the same set of the model parameters, but, in a properly defined linear limit, approach different branches of the polariton dispersion relation for linear waves. Bright solitons with zero background feature an oscillatory-instability threshold which can be associated with a resonance between the edges of the continuous spectrum branches. `Half-topological' dark-gray and nontopological gray-gray solitons are stable in wide parametric ranges below the modulational instability threshold, while bright solitons on the constant-amplitude pedestal are unstable.