论文标题

用于自适应控制二阶系统的元强化学习

Meta-Reinforcement Learning for Adaptive Control of Second Order Systems

论文作者

McClement, Daniel G., Lawrence, Nathan P., Forbes, Michael G., Loewen, Philip D., Backström, Johan U., Gopaluni, R. Bhushan

论文摘要

元学习是机器学习的一个分支,旨在从相关任务的分布中综合数据以有效地解决新的任务。在过程控制中,许多系统具有相似且充分理解的动态,这表明可以通过元学习创建可推广的控制器是可行的。在这项工作中,我们制定了元加强学习(META-RL)控制策略,该策略利用了已知的离线信息进行培训,例如模型结构。对模型参数的分布而不是单个模型,对元RL代理进行了训练,从而使代理能够自动适应过程动力学的变化,同时保持性能。一个关键的设计元素是能够在培训期间离线利用基于模型的信息,同时保持与新环境互动的无模型策略结构。我们以前的工作已经证明了如何将这种方法应用于调整比例综合控制器以控制一阶过程的与工业相关的问题。在这项工作中,我们简要地重新引入了我们的方法,并证明了如何将其扩展到比例综合衍生的控制器和二阶系统。

Meta-learning is a branch of machine learning which aims to synthesize data from a distribution of related tasks to efficiently solve new ones. In process control, many systems have similar and well-understood dynamics, which suggests it is feasible to create a generalizable controller through meta-learning. In this work, we formulate a meta reinforcement learning (meta-RL) control strategy that takes advantage of known, offline information for training, such as a model structure. The meta-RL agent is trained over a distribution of model parameters, rather than a single model, enabling the agent to automatically adapt to changes in the process dynamics while maintaining performance. A key design element is the ability to leverage model-based information offline during training, while maintaining a model-free policy structure for interacting with new environments. Our previous work has demonstrated how this approach can be applied to the industrially-relevant problem of tuning proportional-integral controllers to control first order processes. In this work, we briefly reintroduce our methodology and demonstrate how it can be extended to proportional-integral-derivative controllers and second order systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源