论文标题
多维网络的动态随机块模型
A Dynamic Stochastic Block Model for Multidimensional Networks
论文作者
论文摘要
关系数据的可用性可以为经济运作提供新的见解。但是,使用多种类型的关系对网络数据中的动态进行建模仍然是一个具有挑战性的问题。随机块模型为网络分析提供了简约而灵活的方法。我们为多维网络提出了一个新的随机块模型,其中特定于图层的隐藏马尔可夫链过程驱动了社区形成的变化。给定层中节点的块成员资格的变化可能会受到其过去成员资格在其他层中的影响。这允许聚类重叠,聚类解耦或层之间的更复杂的关系,包括单向或双向的,非线性的Granger块因果关系。我们通过假设贝叶斯框架内的多拉普拉斯先验分布来解决饱和规范的过度参数化问题。数据增强和Gibbs采样用于使推理问题更加易于处理。通过模拟,我们表明在大多数情况下,标准线性模型和成对方法无法检测到阻滞因果关系。相反,我们的模型可以恢复真正的Granger因果关系结构。作为国际贸易的应用,我们表明我们的模型提供了一个统一的框架,其中包括社区检测和重力方程建模。我们发现了大量国家样本中两层的贸易协定和流动和核心外围结构的新证据。
The availability of relational data can offer new insights into the functioning of the economy. Nevertheless, modeling the dynamics in network data with multiple types of relationships is still a challenging issue. Stochastic block models provide a parsimonious and flexible approach to network analysis. We propose a new stochastic block model for multidimensional networks, where layer-specific hidden Markov-chain processes drive the changes in community formation. The changes in the block membership of a node in a given layer may be influenced by its own past membership in other layers. This allows for clustering overlap, clustering decoupling, or more complex relationships between layers, including settings of unidirectional, or bidirectional, non-linear Granger block causality. We address the overparameterization issue of a saturated specification by assuming a Multi-Laplacian prior distribution within a Bayesian framework. Data augmentation and Gibbs sampling are used to make the inference problem more tractable. Through simulations, we show that standard linear models and the pairwise approach are unable to detect block causality in most scenarios. In contrast, our model can recover the true Granger causality structure. As an application to international trade, we show that our model offers a unified framework, encompassing community detection and Gravity equation modeling. We found new evidence of block Granger causality of trade agreements and flows and core-periphery structure in both layers on a large sample of countries.