论文标题
从3D MRI的自动缺血性中风病变分割
Automated ischemic stroke lesion segmentation from 3D MRI
论文作者
论文摘要
缺血性中风病变细分挑战(Isles 2022)为研究人员提供了一个平台,可以将其解决方案与3D MRI的缺血性中风区域进行比较。在这项工作中,我们描述了我们对2022分段任务的解决方案。我们将所有图像重新样本为共同的分辨率,使用两种输入MRI模式(DWI和ADC),并使用MONAI的Train Segresnet语义分割网络。最终提交是15个模型的合奏(来自3倍5倍交叉验证的运行)。我们的解决方案(NVAUTO团队名称)在骰子度量标准(0.824)和总排名第2(基于组合度量排名)方面获得了最高位置。
Ischemic Stroke Lesion Segmentation challenge (ISLES 2022) offers a platform for researchers to compare their solutions to 3D segmentation of ischemic stroke regions from 3D MRIs. In this work, we describe our solution to ISLES 2022 segmentation task. We re-sample all images to a common resolution, use two input MRI modalities (DWI and ADC) and train SegResNet semantic segmentation network from MONAI. The final submission is an ensemble of 15 models (from 3 runs of 5-fold cross validation). Our solution (team name NVAUTO) achieves the top place in terms of Dice metric (0.824), and overall rank 2 (based on the combined metric ranking).