论文标题
转移的接触结构及其本地理论
Shifted Contact Structures and Their Local Theory
论文作者
论文摘要
在本文中,我们正式定义了在派生(Artin)堆栈上移动的接触结构的概念,并在派生的代数几何形状的背景下研究其局部特性。在这方面,对于否定转移的触点派生的$ \ mathbb {k} $ - 方案,我们开发了类似darboux的定理并提出了符号的概念。
In this paper, we formally define the concept of shifted contact structures on derived (Artin) stacks and study their local properties in the context of derived algebraic geometry. In this regard, for negatively shifted contact derived $\mathbb{K}$-schemes, we develop a Darboux-like theorem and formulate the notion of symplectification.