论文标题

超出平均场理论的随机方程和动态

Stochastic equations and dynamics beyond mean-field theory

论文作者

Rizzo, Tommaso

论文摘要

具有复制对称性对称性的一步的旋转玻璃模型中发生的动态过渡是一种平均场伪影,它在有限的系统和/或有限尺寸中消失。动态随机方程式在$β$制度中描述了平滑过渡的临界波动。动态随机方程的定量参数已通过(静态)空腔方法在3旋晶格晶格旋转玻璃上进行了分析计算,并且方程已通过数值求解。所得无参数的动力学预测在此显示与相关性及其波动的数值模拟数据非常吻合。

The dynamical transition occurring in spin-glass models with one step of Replica-Symmetry-Breaking is a mean-field artifact that disappears in finite systems and/or in finite dimensions. The critical fluctuations that smooth the transition are described in the $β$ regime by dynamical stochastic equations. The quantitative parameters of the dynamical stochastic equations have been computed analytically on the 3-spin Bethe lattice Spin-Glass by means of the (static) cavity method and the equations have been solved numerically. The resulting parameter-free dynamical predictions are shown here to be in excellent agreement with numerical simulation data for the correlation and its fluctuations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源