论文标题
PADLOC:基于激光雷达的深度环闭合检测和使用全景注意
PADLoC: LiDAR-Based Deep Loop Closure Detection and Registration Using Panoptic Attention
论文作者
论文摘要
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探测器中累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了基于激光雷达的SLAM框架的Padloc,以进行关节环闭合检测和注册。我们提出了一个基于变压器的新型头,以进行点云匹配和注册,并在训练时间内利用全盘信息。特别是,我们提出了一个新颖的损失函数,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。在推断过程中,Padloc不需要泛型注释,使其比其他方法更具用途。此外,我们表明,使用两个共享的匹配和注册头及其源和目标输入交换,可以通过执行前回溯一致性来提高整体性能。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的结果。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
A key component of graph-based SLAM systems is the ability to detect loop closures in a trajectory to reduce the drift accumulated over time from the odometry. Most LiDAR-based methods achieve this goal by using only the geometric information, disregarding the semantics of the scene. In this work, we introduce PADLoC for joint loop closure detection and registration in LiDAR-based SLAM frameworks. We propose a novel transformer-based head for point cloud matching and registration, and to leverage panoptic information during training time. In particular, we propose a novel loss function that reframes the matching problem as a classification task for the semantic labels and as a graph connectivity assignment for the instance labels. During inference, PADLoC does not require panoptic annotations, making it more versatile than other methods. Additionally, we show that using two shared matching and registration heads with their source and target inputs swapped increases the overall performance by enforcing forward-backward consistency. We perform extensive evaluations of PADLoC on multiple real-world datasets demonstrating that it achieves state-of-the-art results. The code of our work is publicly available at http://padloc.cs.uni-freiburg.de.