论文标题
舒伯特品种的最小抛物线亚组和自动形态群体
Minimal parabolic subgroups and automorphism groups of Schubert varieties
论文作者
论文摘要
让$ g $成为一个简单简单的隔离类型$ \ mathbb {c} $复数的伴随类型,$ b $是$ g $的borel子组,其中包含$ g $的$ g $。 no schubert variety $ x_ {q}(w)$ in $ g/q $中的$,使最小的抛物线亚组$p_α$ $ g $的$ g $是连接的组件,包含所有代数自动形态的身份自动形态,为$ x_ {q}(Q} $ $ x_ {q}(w)。$。
Let $G$ be a simple simply-laced algebraic group of adjoint type over the field $\mathbb{C}$ of complex numbers, $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G.$ In this article, we show that $ω_α$ is a minuscule fundamental weight if and only if for any parabolic subgroup $Q$ containing $B$ properly, there is no Schubert variety $X_{Q}(w)$ in $G/Q$ such that the minimal parabolic subgroup $P_α$ of $G$ is the connected component, containing the identity automorphism of the group of all algebraic automorphisms of $X_{Q}(w).$