论文标题

非确定性的层次结构

A Hierarchy of Nondeterminism

论文作者

Radi, Bader Abu, Kupferman, Orna, Leshkowitz, Ofer

论文摘要

我们研究了非确定性层次结构的三个级别:非确定的自动机$ \ Mathcal {a} $,如果我们可以通过重新恢复其某些过渡量来获得相当于$ \ Mathcal {a} $的确定性自动机,则可以通过修剪(DBP)确定。然后,$ \ Mathcal {a} $是历史确定性(HD),如果可以以仅取决于过去的方式解决其非确定性选择。最后,如果$ \ Mathcal {a} $在$ \ Mathcal {a} $中导致等价状态,则$ \ MATHCAL {A} $是语义上的确定性(SD)。自动机在形式方法中的某些应用需要确定性的自动机,但实际上可以使用一定程度的非确定性来使用自动机。例如,DBP自动机对在线算法的分析很有用,而HD Automata在合成和控制中很有用。 For automata on finite words, the three levels in the hierarchy coincide.我们在无限单词上研究Büchi,Co-Büchi和弱自动机的层次结构。我们表明,层次结构是严格的,研究其中不同级别的表达力,以及在给定层面上决定语言成员的复杂性。最后,我们描述了对层次结构的基于概率的分析,该分析将非确定性的水平与语言中的单词上随机运行的概率联系起来。我们将后者与无确定性自动机联系起来,这些自动机在推理概率系统时可以使用。

We study three levels in a hierarchy of nondeterminism: A nondeterministic automaton $\mathcal{A}$ is determinizable by pruning (DBP) if we can obtain a deterministic automaton equivalent to $\mathcal{A}$ by removing some of its transitions. Then, $\mathcal{A}$ is history deterministic (HD) if its nondeterministic choices can be resolved in a way that only depends on the past. Finally, $\mathcal{A}$ is semantically deterministic (SD) if different nondeterministic choices in $\mathcal{A}$ lead to equivalent states. Some applications of automata in formal methods require deterministic automata, yet in fact can use automata with some level of nondeterminism. For example, DBP automata are useful in the analysis of online algorithms, and HD automata are useful in synthesis and control. For automata on finite words, the three levels in the hierarchy coincide. We study the hierarchy for Büchi, co-Büchi, and weak automata on infinite words. We show that the hierarchy is strict, study the expressive power of the different levels in it, as well as the complexity of deciding the membership of a language in a given level. Finally, we describe a probability-based analysis of the hierarchy, which relates the level of nondeterminism with the probability that a random run on a word in the language is accepting. We relate the latter to nondeterministic automata that can be used when reasoning about probabilistic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源