论文标题

双摆中的马鞍运输和混乱

Saddle Transport and Chaos in the Double Pendulum

论文作者

Kaheman, Kadierdan, Bramburger, Jason J., Kutz, J. Nathan, Brunton, Steven L.

论文摘要

摆锤是已经研究了几个世纪的简单机械系统,并展示了现代动力学系统理论的许多方面。特别是,双摆是一种典型的混沌系统,经常用于说明非线性动力学中的各种现象。在这项工作中,我们探讨了双摆中Codimension-1不变的歧管的存在和含义,该歧管源自围绕鞍座平衡的不稳定周期轨道,并充当介导全球相位空间传输的分离。在某种程度上,通过关于三体问题的类似研究的动机,我们能够在太阳系中的双摆动力和运输的动力学之间进行直接比较,而太阳系中存在于巨大的尺度上。因此,双子摆可以被视为混乱,鞍介导的运输的桌面基准,与节能空间任务设计直接相关。这项工作的分析结果提供了一个存在的结果,涉及相位空间中任意长的行程,该行程适用于两种两种自由的汉密尔顿系统,包括三体问题和双摆。该手稿详细介绍了与双摆的杂技运动相对应的各种周期性轨道,这些轨道运动可以在实验室环境中识别和控制。

Pendulums are simple mechanical systems that have been studied for centuries and exhibit many aspects of modern dynamical systems theory. In particular, the double pendulum is a prototypical chaotic system that is frequently used to illustrate a variety of phenomena in nonlinear dynamics. In this work, we explore the existence and implications of codimension-1 invariant manifolds in the double pendulum, which originate from unstable periodic orbits around saddle equilibria and act as separatrices that mediate the global phase space transport. Motivated in part by similar studies on the three-body problem, we are able to draw a direct comparison between the dynamics of the double pendulum and transport in the solar system, which exist on vastly different scales. Thus, the double pendulum may be viewed as a table-top benchmark for chaotic, saddle-mediated transport, with direct relevance to energy-efficient space mission design. The analytical results of this work provide an existence result, concerning arbitrarily long itineraries in phase space, that is applicable to a wide class of two degree of freedom Hamiltonian systems, including the three-body problem and the double pendulum. This manuscript details a variety of periodic orbits corresponding to acrobatic motions of the double pendulum that can be identified and controlled in a laboratory setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源