论文标题
观察$ {}^{229} \ mathrm {th} $核钟异构体的辐射衰减
Observation of the radiative decay of the ${}^{229}\mathrm{Th}$ nuclear clock isomer
论文作者
论文摘要
放射性同位素Thorium-229($ {}^{229} $ Th)的核具有异常的异构体,具有异常低的激发能,可直接对核态进行激光操纵。因此,它是用于下一代光学时钟的领先候选人。该核时钟将是一个独特的工具,用于测试基本物理学。虽然第一个间接的实验证据证明存在这种非凡的核状态较大,但仅通过观察Isomer的电子转化衰变及其在激光光谱研究中的超细胞结构才能实现存在证明,从而揭示了有关异构体的激发能量,核自旋和电子电磁的信息。进一步研究报告了电子转化寿命,并完善了异构体的能量。尽管最近取得了进展,但异构体的辐射衰减是核钟发展的关键要素,但仍未观察到。 在这封信中,我们报告了Thorium-229中此低能异构体的辐射衰减的检测($ {}^{229 \ Mathrm {M {M}} $ TH)。通过执行$ {}^{}^{}^{229 \ Mathrm {m}} $的真空 - 硫化物光谱法,将融合到大型散gap caf caf $ {} _ 2 $ {} _ 2 $和mgf $ {} _ 2 $ 2 $ crystals的Isolde设施中的is photon vacue at is isomem evavel的isomem evavellength NM,对应于8.338(24)eV的激发能。该值与最近的测量值一致,并将不确定性降低了7倍。 $ {}^{229 \ mathrm {m}} $ th的半衰期确定为670(102)s。大带晶体中辐射衰减的观察对未来核时钟的设计具有重要的后果,并且能量的不确定性改善可缓解寻找原子核的直接激光激发。
The nucleus of the radioisotope thorium-229 (${}^{229}$Th) features an isomer with an exceptionally low excitation energy that enables direct laser manipulation of nuclear states. For this reason, it is a leading candidate for use in next-generation optical clocks. This nuclear clock will be a unique tool, amongst others, for tests of fundamental physics. While first indirect experimental evidence for the existence of such an extraordinary nuclear state is significantly older, the proof of existence has been delivered only recently by observing the isomer's electron conversion decay and its hyperfine structure in a laser spectroscopy study, revealing information on the isomer's excitation energy, nuclear spin and electromagnetic moments. Further studies reported the electron conversion lifetime and refined the isomer's energy. In spite of recent progress, the isomer's radiative decay, a key ingredient for the development of a nuclear clock, remained unobserved. In this Letter, we report the detection of the radiative decay of this low-energy isomer in thorium-229 (${}^{229\mathrm{m}}$Th). By performing vacuum-ultraviolet spectroscopy of ${}^{229\mathrm{m}}$Th incorporated into large-bandgap CaF${}_2$ and MgF${}_2$ crystals at the ISOLDE facility at CERN, the photon vacuum wavelength of the isomer's decay is measured as 148.71(42) nm, corresponding to an excitation energy of 8.338(24) eV. This value is in agreement with recent measurements, and decreases the uncertainty by a factor of seven. The half-life of ${}^{229\mathrm{m}}$Th embedded in MgF${}_2$ is determined to be 670(102) s. The observation of the radiative decay in a large-bandgap crystal has important consequences for the design of a future nuclear clock and the improved uncertainty of the energy eases the search for direct laser excitation of the atomic nucleus.