论文标题

连续知识元适应学习无监督医学诊断

Consecutive Knowledge Meta-Adaptation Learning for Unsupervised Medical Diagnosis

论文作者

Zhang, Yumin, Hou, Yawen, Chen, Xiuyi, Yu, Hongyuan, Xia, Long

论文摘要

基于深度学习的计算机辅助诊断(CAD)在学术研究和临床应用中引起了吸引人的关注。然而,卷积神经网络(CNNS)诊断系统在很大程度上依赖于标记的病变数据集,对数据分布变化的敏感性也限制了CNN在CAD中的潜在应用。开发了无监督的域适应性(UDA)方法来解决昂贵的注释和域间隙问题,并在医学图像分析中取得了巨大的成功。然而,现有的UDA方法仅适应从源病变域中汲取的知识到一个单个目标病变域,这违反了临床情况:要诊断的新的未标记的目标域始终以在线和连续的方式到达。此外,由于新知识的知识覆盖了以前学习过的知识(即灾难性的遗忘),因此现有方法的性能会大大降低了以前学到的目标病变域的巨大变化。为了处理上述问题,我们开发了一个称为连续病变知识元适应(CLKM)的元适应框架,该框架主要由语义适应阶段(​​SAP)和表示适应阶段(​​RAP)组成,以在线和持续方式学习诊断模型。在SAP中,从源病变域中学到的语义知识转移到连续的目标病变域。在RAP中,优化了功能提取器,以使整个源和多个目标病变域的可转移表示知识对齐。

Deep learning-based Computer-Aided Diagnosis (CAD) has attracted appealing attention in academic researches and clinical applications. Nevertheless, the Convolutional Neural Networks (CNNs) diagnosis system heavily relies on the well-labeled lesion dataset, and the sensitivity to the variation of data distribution also restricts the potential application of CNNs in CAD. Unsupervised Domain Adaptation (UDA) methods are developed to solve the expensive annotation and domain gaps problem and have achieved remarkable success in medical image analysis. Yet existing UDA approaches only adapt knowledge learned from the source lesion domain to a single target lesion domain, which is against the clinical scenario: the new unlabeled target domains to be diagnosed always arrive in an online and continual manner. Moreover, the performance of existing approaches degrades dramatically on previously learned target lesion domains, due to the newly learned knowledge overwriting the previously learned knowledge (i.e., catastrophic forgetting). To deal with the above issues, we develop a meta-adaptation framework named Consecutive Lesion Knowledge Meta-Adaptation (CLKM), which mainly consists of Semantic Adaptation Phase (SAP) and Representation Adaptation Phase (RAP) to learn the diagnosis model in an online and continual manner. In the SAP, the semantic knowledge learned from the source lesion domain is transferred to consecutive target lesion domains. In the RAP, the feature-extractor is optimized to align the transferable representation knowledge across the source and multiple target lesion domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源