论文标题

粗糙系数的椭圆特征值问题的最佳域

Optimal domains for elliptic eigenvalue problems with rough coefficients

论文作者

Snelson, Stanley, Teixeira, Eduardo V.

论文摘要

我们证明,在给定度量的所有开放式集合中,我们证明了一个开放式集合最小化具有有界,可测量系数的椭圆算子的第一个dirichlet特征值。我们的证明是基于一种自由边界方法:我们将最佳集合上的本征功能表征为受惩罚功能的最小化器,并由于Hölder估算本质功能而得出了最佳集合的开放性。我们还证明,最佳特征功能最多可以从自由边界线性地增长,即在自由边界点处是Lipschitz的连续。

We prove the existence of an open set minimizing the first Dirichlet eigenvalue of an elliptic operator with bounded, measurable coefficients, over all open sets of a given measure. Our proof is based on a free boundary approach: we characterize the eigenfunction on the optimal set as the minimizer of a penalized functional, and derive openness of the optimal set as a consequence of a Hölder estimate for the eigenfunction. We also prove that the optimal eigenfunction grows at most linearly from the free boundary, i.e. it is Lipschitz continuous at free boundary points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源