论文标题

变异量子算法的迭代复杂性

Iteration Complexity of Variational Quantum Algorithms

论文作者

Kungurtsev, Vyacheslav, Korpas, Georgios, Marecek, Jakub, Zhu, Elton Yechao

论文摘要

最近对量子计算机的近期应用引起了很多兴趣,即使用由于硬件限制而导致的降压时间短的量子电路。变性量子算法(VQA),其中在经典计算机上实现的优化算法将参数化的量子电路评估为目标函数,是该空间中的领先框架。在此框架中,已经提出了巨大的算法广度,以解决机器学习,预测,应用物理和组合优化等方面的一系列问题。 在本文中,我们分析了VQA的迭代复杂性,即VQA所需的步骤数量,直到其迭代满足替代的最佳度量为止。我们认为,尽管VQA程序结合了在优化文献中可以建模为经典程序的算法,但近期设备中噪声的特殊性质使对这些算法的现成分析的适用性无效。具体而言,噪声通过偏置量子电路对目标函数进行评估。因此,常用的优化程序,例如SPSA和参数移位规则,可以看作是具有偏置功能评估的无衍生化优化算法,目前在文献中没有迭代复杂性保证。我们得出缺少的保证,发现收敛速度不受影响。但是,偏差的水平对其中的常数和平稳性的渐近距离不利,即,偏差越多,充其量只能确保达到VQA目标的固定点。

There has been much recent interest in near-term applications of quantum computers, i.e., using quantum circuits that have short decoherence times due to hardware limitations. Variational quantum algorithms (VQA), wherein an optimization algorithm implemented on a classical computer evaluates a parametrized quantum circuit as an objective function, are a leading framework in this space. An enormous breadth of algorithms in this framework have been proposed for solving a range of problems in machine learning, forecasting, applied physics, and combinatorial optimization, among others. In this paper, we analyze the iteration complexity of VQA, that is, the number of steps that VQA requires until its iterates satisfy a surrogate measure of optimality. We argue that although VQA procedures incorporate algorithms that can, in the idealized case, be modeled as classic procedures in the optimization literature, the particular nature of noise in near-term devices invalidates the claim of applicability of off-the-shelf analyses of these algorithms. Specifically, noise makes the evaluations of the objective function via quantum circuits biased. Commonly used optimization procedures, such as SPSA and the parameter shift rule, can thus be seen as derivative-free optimization algorithms with biased function evaluations, for which there are currently no iteration complexity guarantees in the literature. We derive the missing guarantees and find that the rate of convergence is unaffected. However, the level of bias contributes unfavorably to both the constant therein, and the asymptotic distance to stationarity, i.e., the more bias, the farther one is guaranteed, at best, to reach a stationary point of the VQA objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源